

L3100B L3100B1

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR AND CURRENT LIMITER

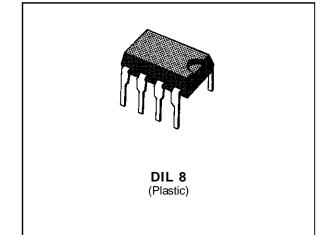
FEATURES

- UNIDIRECTIONAL FUNCTION
- PROGRAMMABLE BREAKDOWN VOLTAGE UP TO 265 V
- PROGRAMMABLE CURRENT LIMITATION FROM 50 mA TO 550 mA
- HIGH SURGE CURRENT CAPABILITY
 IPP = 100A 10/1000 μs

DESCRIPTION

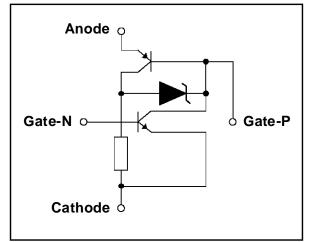
Dedicated to sensitive telecom equipment protection, this device can provide both voltage protection and current limitation with a very tight tolerance.

Its high surge current capability makes the L3100B a reliable protection device for very exposed equipment, or when series resistors are very low.


The breakdown voltage can be easily programmed by using an external zener diode.

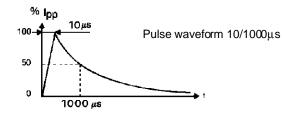
A multiple protection mode can also be performed when using several zener diodes, providing each line interface with an optimized protection level.

The current limiting function is achieved with the use of a resistor between the gate and the cathode. The value of the resistor will determine the level of the desired current.



IN ACCORDANCE WITH FOLLOWING STANDARDS :

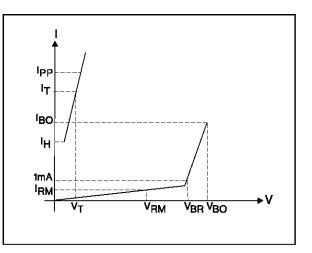
CCITT K17 - K20	{	10/700 μs 5/310 μs	1.5 kV 38 A
VDE 0433	{ 1	0/700 μs 5/200 μs	2 kV 50 A
CNET	{ 0.	5/700 μs .2/310 μs	1.5 kV 38 A


SCHEMATIC DIAGRAM

L3100B/L3100B1

Symbol	Parameter	Value	Unit
IPP	Peak pulse current	100 250	A
ITSM	Non repetitive surge peak on-state current	50	А
di/dt	Critical rate of rise of on-state current	100	A/µs
dv/dt	Critical rate of rise of off-state voltage	5	KV/μs
T _{stg} Tj	Storage and operating junction temperature rar	- 40 to + 150 + 150	°C °C

ABSOLUTE RATINGS (limiting values) (- $40^{\circ}C \le T_{amb} \le +85^{\circ}C$)


THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th} (j-a)	Junction-to-ambient	80	°C/W

ELECTRICAL CHARACTERISTICS.

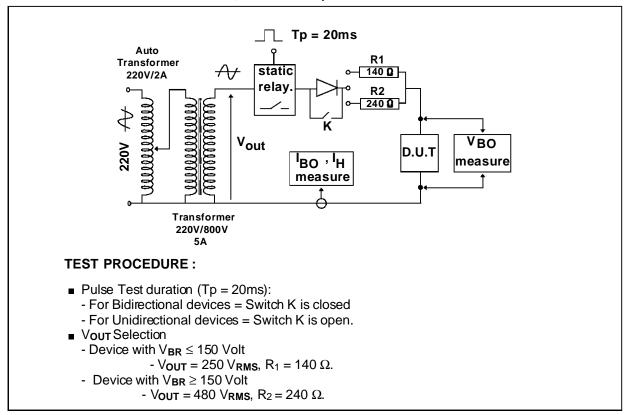
Symbol	Parameter			
VRM	Stand-off voltage			
VBR	Breakdown voltage			
VBO	Breakover voltage			
ŀн	Holding current			
VT	On-state voltage @ IT			
IBO	Breakover current			
IPP	Peak pulse current			
VG	Gate voltage			
lG	Firing gate current			

OPERATION WITHOUT GATE.

Туре	I _{RM} @ V _{RM}		VBR	@ I _R	VBO	@	Iво	ΙH	٧T	С
	max		min		max	min	max	min	max	max
						note 1		note 1	note 2	note 3
	μΑ	v	v	mA	v	mA	mA	mA	V	рF
L3100B	6 40	60 250	265	1	350	200	500	280	2	100
L3100B1	6 40	60 250	255	1	350	200	500	210	2	100

OPERATION WITH GATES.

Туре	V _{GN} @ I _{GN} = 200 mA		IGN @ V _{AC} = 100V		V _{RGN} @ I _G = 1mA	IGP @ VAC = 100V	
	min	max	min max		min	max	
	V	v	mA	mA	V	mA	
L3100B/B1	0.6	1.8	30	200	0.7	150	


All parameters tested at 25°C, except where indicated otherwise.

Note 1 : See the reference test circuit for I_{H} , I_{BO} and V_{BO} parameters.

Note 2 : Square pulse $T_{P}=500\mu s - I_{T}=1A$.

Note 3: $V_R = 5 V$, f = 1 MHz.

REFERENCE TEST CIRCUIT FOR IH, IBO and VBO parameters :

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT = GO - NOGO TEST.

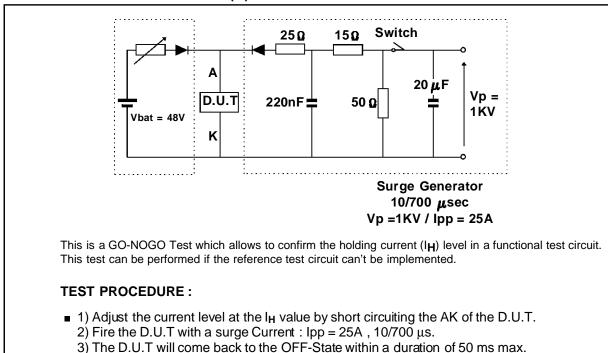


Figure 1 : Non-repetitive surge peak on state current versus number of cycles. (with sinusoïdal pulse: F = 50 Hz).

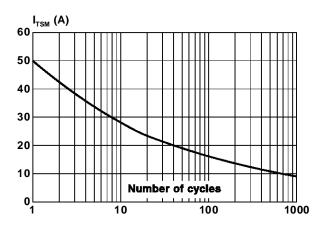
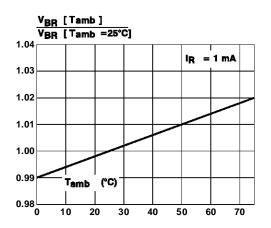



Figure 3 : Relative variation of breakdown voltage versus ambient temperature.

Figure 2 : Relative variation of holding current versus junction temperature.

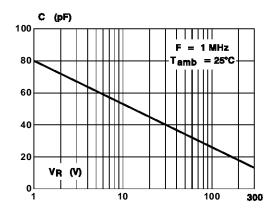



Figure 4 : Junction capacitance versus reverse applied voltage.

APPLICATION CIRCUIT

Overvoltage Protection and Current limitation

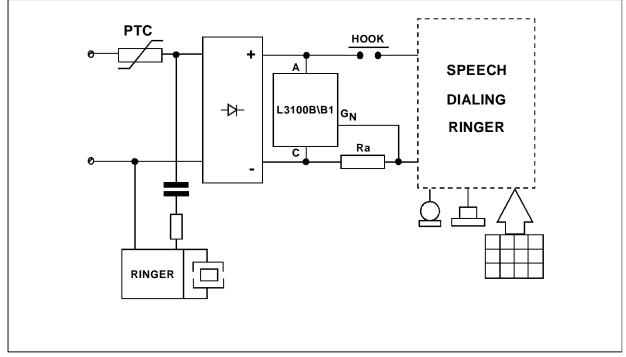
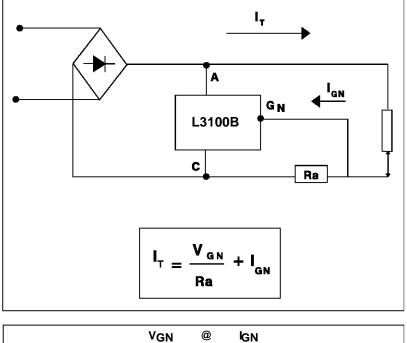
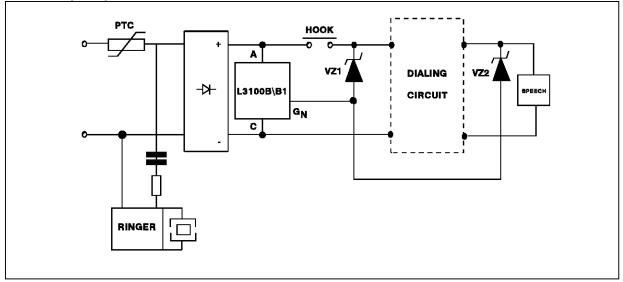
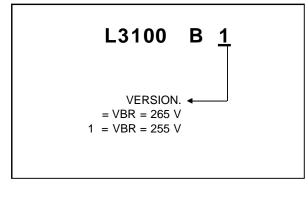



Table below gives the tolerance of the limited current I_T for each standardized resistor value. The formula (1) has been used with V_{GN} values specified at the typical gate current level I_{GN} .


CURRENT TOLERANCE							
R Ω (±5%)	lT mA min	Iт mA max					
3.00 3.30 3.60 3.90 4.30 4.70 5.10 5.60 6.20 6.80 7.50 8.20 9.10 10.10 11.00 12.00 13.00 15.00 16.00 18.00 20.00 22.00 24.00 27.00	268 246 228 213 196 181 170 158 145 135 152 117 108 101 95 90 85 78 75 70 66 62 60 56	533 503 478 456 433 413 396 379 361 347 333 322 310 299 291 283 277 266 263 256 256 250 245 242 237					

	VGN	@	I GN	
Min		Max		Тур.
V		۷		mA
0.75		0.95		100

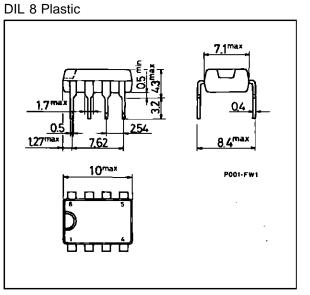
Ground key telephone set Protection


PROTECTION MODES :

OFF HOOK = Ringer circuit protection is ensured with breakdown voltage at 265 V.

ON HOOK = In dialing mode and in conversation mode, the breakdown voltage of L3100B can be adapted to different levels with two zener diodes.

HOMSON


ORDER CODE

MARKING : Logo, Date Code, part Number.

PACKAGING : Products supplied in antistatic tubes.

PACKAGE MECHANICAL DATA (in millimeters).

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

